| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 5077485 | 1374132 | 2009 | 10 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												To split or not to split: Capital allocation with convex risk measures
												
											دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												کلمات کلیدی
												
											موضوعات مرتبط
												
													مهندسی و علوم پایه
													ریاضیات
													آمار و احتمال
												
											پیش نمایش صفحه اول مقاله
												 
												چکیده انگلیسی
												Convex risk measures were introduced by Deprez and Gerber [Deprez, O., Gerber, H.U., 1985. On convex principles of premium calculation. Insurance: Math. Econom. 4 (3), 179-189]. Here the problem of allocating risk capital to subportfolios is addressed, when convex risk measures are used. The Aumann-Shapley value is proposed as an appropriate allocation mechanism. Distortion-exponential measures are discussed extensively and explicit capital allocation formulas are obtained for the case that the risk measure belongs to this family. Finally the implications of capital allocation with a convex risk measure for the stability of portfolios are discussed. It is demonstrated that using a convex risk measure for capital allocation can produce an incentive for infinite fragmentation of portfolios.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Insurance: Mathematics and Economics - Volume 44, Issue 2, April 2009, Pages 268-277
											Journal: Insurance: Mathematics and Economics - Volume 44, Issue 2, April 2009, Pages 268-277
نویسندگان
												Andreas Tsanakas,