کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5077688 1374145 2006 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Generalized estimating equations for variance and covariance parameters in regression credibility models
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آمار و احتمال
پیش نمایش صفحه اول مقاله
Generalized estimating equations for variance and covariance parameters in regression credibility models
چکیده انگلیسی
We propose a regression credibility model that extends the one introduced by Hachemeister [Hachemeister, C.A., 1975. Credibility for regression models with application to trend. In: Kahn, P.M. (Ed.), Credibility: Theory and Applications. Academic Press, New York, pp. 129-163] by encapsulating a moving average error structure. Generalized estimating equations (GEE) are developed to estimate the unknown variance and covariance parameters. A comprehensive account is presented to demonstrate the implementation of the Bühlmann and Bühlmann-Straub frameworks under the model proposed and how GEE estimators are worked out within these two frameworks. A simulation study is conducted to compare the performance of the proposed GEE estimators with the alternative Bühlmann, Bühlmann-Straub, and Cossette and Luong's [Cossette, H., Luong, A., 2003. Generalised least squares estimators for creditibilty regression models with moving average errors. Insurance Math. Econom. 32, 281-293] GLS estimators. The GEE estimators are found to perform well, especially when the error terms are correlated.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Insurance: Mathematics and Economics - Volume 39, Issue 1, 1 August 2006, Pages 99-113
نویسندگان
, , ,