کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5091299 1375670 2007 22 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Using self-organizing maps to adjust for intra-day seasonality
موضوعات مرتبط
علوم انسانی و اجتماعی اقتصاد، اقتصادسنجی و امور مالی اقتصاد و اقتصادسنجی
پیش نمایش صفحه اول مقاله
Using self-organizing maps to adjust for intra-day seasonality
چکیده انگلیسی
The existence of an intra-day seasonality component in financial market variables (volatility, volume, activity, etc.) has been highlighted in many previous studies. To remove this cyclical component from raw data, many researchers use the intra-day average observations model (IAOM) and/or some smoothing techniques (e.g. the kernel method). When the seasonality is related to the first moment (the conditional expectation) and involves only a deterministic component, the IAOM method succeeds in estimating the periodicity almost perfectly. However, when seasonality affects the first or the second moment (the conditional variance) of the data and contains both deterministic and stochastic components, both IAOM and the kernel method fail to capture it. We introduce self-organizing maps (SOM) as a solution. SOM are based on neural network learning and nonlinear projections. Their flexibility allows seasonality to be captured even in the presence of stochastic cycles.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Banking & Finance - Volume 31, Issue 6, June 2007, Pages 1817-1838
نویسندگان
, ,