کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5096042 1376499 2015 20 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Oracle inequalities for high dimensional vector autoregressions
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آمار و احتمال
پیش نمایش صفحه اول مقاله
Oracle inequalities for high dimensional vector autoregressions
چکیده انگلیسی

This paper establishes non-asymptotic oracle inequalities for the prediction error and estimation accuracy of the LASSO in stationary vector autoregressive models. These inequalities are used to establish consistency of the LASSO even when the number of parameters is of a much larger order of magnitude than the sample size. We also state conditions under which no relevant variables are excluded.Next, non-asymptotic probabilities are given for the adaptive LASSO to select the correct sparsity pattern. We then provide conditions under which the adaptive LASSO reveals the correct sparsity pattern asymptotically. We establish that the estimates of the non-zero coefficients are asymptotically equivalent to the oracle assisted least squares estimator. This is used to show that the rate of convergence of the estimates of the non-zero coefficients is identical to the one of least squares only including the relevant covariates.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Econometrics - Volume 186, Issue 2, June 2015, Pages 325-344
نویسندگان
, ,