کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5096203 1478578 2012 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Efficient minimum distance estimation with multiple rates of convergence
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آمار و احتمال
پیش نمایش صفحه اول مقاله
Efficient minimum distance estimation with multiple rates of convergence
چکیده انگلیسی

This paper extends the asymptotic theory of GMM inference to allow sample counterparts of the estimating equations to converge at (multiple) rates, different from the usual square-root of the sample size. In this setting, we provide consistent estimation of the structural parameters. In addition, we define a convenient rotation in the parameter space (or reparametrization) to disentangle the different rates of convergence. More precisely, we identify special linear combinations of the structural parameters associated with a specific rate of convergence. Finally, we demonstrate the validity of usual inference procedures, like the overidentification test and Wald test, with standard formulas. It is important to stress that both estimation and testing work without requiring the knowledge of the various rates. However, the assessment of these rates is crucial for (asymptotic) power considerations.Possible applications include econometric problems with two dimensions of asymptotics, due to trimming, tail estimation, infill asymptotic, social interactions, kernel smoothing or any kind of regularization.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Econometrics - Volume 170, Issue 2, October 2012, Pages 350-367
نویسندگان
, ,