کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5096361 1376523 2012 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Nonparametric identification of dynamic models with unobserved state variables
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آمار و احتمال
پیش نمایش صفحه اول مقاله
Nonparametric identification of dynamic models with unobserved state variables
چکیده انگلیسی
We consider the identification of a Markov process {Wt,Xt∗} when only {Wt} is observed. In structural dynamic models, Wt includes the choice variables and observed state variables of an optimizing agent, while Xt∗ denotes time-varying serially correlated unobserved state variables (or agent-specific unobserved heterogeneity). In the non-stationary case, we show that the Markov law of motion fWt,Xt∗∣Wt−1,Xt−1∗ is identified from five periods of data Wt+1,Wt,Wt−1,Wt−2,Wt−3. In the stationary case, only four observations Wt+1,Wt,Wt−1,Wt−2 are required. Identification of fWt,Xt∗∣Wt−1,Xt−1∗ is a crucial input in methodologies for estimating Markovian dynamic models based on the “conditional-choice-probability (CCP)” approach pioneered by Hotz and Miller.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Econometrics - Volume 171, Issue 1, November 2012, Pages 32-44
نویسندگان
, ,