کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5096435 1376528 2012 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Jackknife model averaging
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آمار و احتمال
پیش نمایش صفحه اول مقاله
Jackknife model averaging
چکیده انگلیسی
We consider the problem of obtaining appropriate weights for averaging M approximate (misspecified) models for improved estimation of an unknown conditional mean in the face of non-nested model uncertainty in heteroskedastic error settings. We propose a “jackknife model averaging” (JMA) estimator which selects the weights by minimizing a cross-validation criterion. This criterion is quadratic in the weights, so computation is a simple application of quadratic programming. We show that our estimator is asymptotically optimal in the sense of achieving the lowest possible expected squared error. Monte Carlo simulations and an illustrative application show that JMA can achieve significant efficiency gains over existing model selection and averaging methods in the presence of heteroskedasticity.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Econometrics - Volume 167, Issue 1, March 2012, Pages 38-46
نویسندگان
, ,