کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5096438 | 1376528 | 2012 | 19 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Estimation of dynamic models with nonparametric simulated maximum likelihood
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آمار و احتمال
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We propose an easy-to-implement simulated maximum likelihood estimator for dynamic models where no closed-form representation of the likelihood function is available. Our method can handle any simulable model without latent dynamics. Using simulated observations, we nonparametrically estimate the unknown density by kernel methods, and then construct a likelihood function that can be maximized. We prove that this nonparametric simulated maximum likelihood (NPSML) estimator is consistent and asymptotically efficient. The higher-order impact of simulations and kernel smoothing on the resulting estimator is also analyzed; in particular, it is shown that the NPSML does not suffer from the usual curse of dimensionality associated with kernel estimators. A simulation study shows good performance of the method when employed in the estimation of jump-diffusion models.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Econometrics - Volume 167, Issue 1, March 2012, Pages 76-94
Journal: Journal of Econometrics - Volume 167, Issue 1, March 2012, Pages 76-94
نویسندگان
Dennis Kristensen, Yongseok Shin,