کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5096531 1376533 2011 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Nonparametric function estimation subject to monotonicity, convexity and other shape constraints
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آمار و احتمال
پیش نمایش صفحه اول مقاله
Nonparametric function estimation subject to monotonicity, convexity and other shape constraints
چکیده انگلیسی
This paper uses free-knot and fixed-knot regression splines in a Bayesian context to develop methods for the nonparametric estimation of functions subject to shape constraints in models with log-concave likelihood functions. The shape constraints we consider include monotonicity, convexity and functions with a single minimum. A computationally efficient MCMC sampling algorithm is developed that converges faster than previous methods for non-Gaussian models. Simulation results indicate the monotonically constrained function estimates have good small sample properties relative to (i) unconstrained function estimates, and (ii) function estimates obtained from other constrained estimation methods when such methods exist. Also, asymptotic results show the methodology provides consistent estimates for a large class of smooth functions. Two detailed illustrations exemplify the ideas.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Econometrics - Volume 161, Issue 2, 1 April 2011, Pages 166-181
نویسندگان
, , ,