کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5096860 | 1376554 | 2010 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A direct Monte Carlo approach for Bayesian analysis of the seemingly unrelated regression model
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آمار و احتمال
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Computationally efficient methods for Bayesian analysis of seemingly unrelated regression (SUR) models are described and applied that involve the use of a direct Monte Carlo (DMC) approach to calculate Bayesian estimation and prediction results using diffuse or informative priors. This DMC approach is employed to compute Bayesian marginal posterior densities, moments, intervals and other quantities, using data simulated from known models and also using data from an empirical example involving firms' sales. The results obtained by the DMC approach are compared to those yielded by the use of a Markov Chain Monte Carlo (MCMC) approach. It is concluded from these comparisons that the DMC approach is worthwhile and applicable to many SUR and other problems.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Econometrics - Volume 159, Issue 1, November 2010, Pages 33-45
Journal: Journal of Econometrics - Volume 159, Issue 1, November 2010, Pages 33-45
نویسندگان
Arnold Zellner, Tomohiro Ando,