کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5096986 | 1376562 | 2008 | 20 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Methods for inference in large multiple-equation Markov-switching models
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آمار و احتمال
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Inference for multiple-equation Markov-chain models raises a number of difficulties that are unlikely to appear in smaller models. Our framework allows for many regimes in the transition matrix, without letting the number of free parameters grow as the square as the number of regimes, but also without losing a convenient form for the posterior distribution. Calculation of marginal data densities is difficult in these high-dimensional models. This paper gives methods to overcome these difficulties, and explains why existing methods are unreliable. It makes suggestions for maximizing posterior density and initiating MCMC simulations that provide robustness against the complex likelihood shape.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Econometrics - Volume 146, Issue 2, October 2008, Pages 255-274
Journal: Journal of Econometrics - Volume 146, Issue 2, October 2008, Pages 255-274
نویسندگان
Christopher A. Sims, Daniel F. Waggoner, Tao Zha,