کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5097051 | 1376567 | 2008 | 17 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A smooth nonparametric conditional quantile frontier estimator
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آمار و احتمال
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Traditional estimators for nonparametric frontier models (DEA, FDH) are very sensitive to extreme values/outliers. Recently, Aragon et al. [2005. Nonparametric frontier estimation: a conditional quantile-based approach. Econometric Theory 21, 358-389] proposed a nonparametric α-frontier model and estimator based on a suitably defined conditional quantile which is more robust to extreme values/outliers. Their estimator is based on a nonsmooth empirical conditional distribution. In this paper, we propose a new smooth nonparametric conditional quantile estimator for the α-frontier model. Our estimator is a kernel based conditional quantile estimator that builds on early work of Azzalini [1981. A note on the estimation of a distribution function and quantiles by a kernel method. Biometrika 68, 326-328]. It is computationally simple, resistant to outliers and extreme values, and smooth. In addition, the estimator is shown to be consistent and n asymptotically normal under mild regularity conditions. We also show that our estimator's variance is smaller than that of the estimator proposed by Aragon et al. A simulation study confirms the asymptotic theory predictions and contrasts our estimator with that of Aragon et al.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Econometrics - Volume 143, Issue 2, April 2008, Pages 317-333
Journal: Journal of Econometrics - Volume 143, Issue 2, April 2008, Pages 317-333
نویسندگان
Carlos Martins-Filho, Feng Yao,