کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5097082 | 1376569 | 2010 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A comparison of two model averaging techniques with an application to growth empirics
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آمار و احتمال
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Parameter estimation under model uncertainty is a difficult and fundamental issue in econometrics. This paper compares the performance of various model averaging techniques. In particular, it contrasts Bayesian model averaging (BMA) - currently one of the standard methods used in growth empirics - with a new method called weighted-average least squares (WALS). The new method has two major advantages over BMA: its computational burden is trivial and it is based on a transparent definition of prior ignorance. The theory is applied to and sheds new light on growth empirics where a high degree of model uncertainty is typically present.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Econometrics - Volume 154, Issue 2, February 2010, Pages 139-153
Journal: Journal of Econometrics - Volume 154, Issue 2, February 2010, Pages 139-153
نویسندگان
Jan R. Magnus, Owen Powell, Patricia Prüfer,