کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5097154 | 1376572 | 2007 | 22 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A theory of robust long-run variance estimation
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آمار و احتمال
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Long-run variance estimation can typically be viewed as the problem of estimating the scale of a limiting continuous time Gaussian process on the unit interval. A natural benchmark model is given by a sample that consists of equally spaced observations of this limiting process. The paper analyzes the asymptotic robustness of long-run variance estimators to contaminations of this benchmark model. It is shown that any equivariant long-run variance estimator that is consistent in the benchmark model is highly fragile: there always exists a sequence of contaminated models with the same limiting behavior as the benchmark model for which the estimator converges in probability to an arbitrary positive value. A class of robust inconsistent long-run variance estimators is derived that optimally trades off asymptotic variance in the benchmark model against the largest asymptotic bias in a specific set of contaminated models.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Econometrics - Volume 141, Issue 2, December 2007, Pages 1331-1352
Journal: Journal of Econometrics - Volume 141, Issue 2, December 2007, Pages 1331-1352
نویسندگان
Ulrich K. Müller,