کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5097268 | 1376579 | 2008 | 18 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Testing multivariate distributions in GARCH models
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آمار و احتمال
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper, we consider testing distributional assumptions in multivariate GARCH models based on empirical processes. Using the fact that joint distribution carries the same amount of information as the marginal together with conditional distributions, we first transform the multivariate data into univariate independent data based on the marginal and conditional cumulative distribution functions. We then apply the Khmaladze's martingale transformation (K-transformation) to the empirical process in the presence of estimated parameters. The K-transformation eliminates the effect of parameter estimation, allowing a distribution-free test statistic to be constructed. We show that the K-transformation takes a very simple form for testing multivariate normal and multivariate t-distributions. The procedure is applied to a multivariate financial time series data set.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Econometrics - Volume 143, Issue 1, March 2008, Pages 19-36
Journal: Journal of Econometrics - Volume 143, Issue 1, March 2008, Pages 19-36
نویسندگان
Jushan Bai, Zhihong Chen,