کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5097473 | 1478583 | 2006 | 26 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Finite-sample simulation-based inference in VAR models with application to Granger causality testing
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آمار و احتمال
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Tests in vector autoregressive (VAR) models are typically based on large-sample approximations, involving the use of asymptotic distributions or bootstrap techniques. After documenting that such methods can be very misleading even with fairly large samples, we propose a general simulation-based technique that allows one to control completely test levels in parametric VAR models. In particular, we show that maximized Monte Carlo tests [Dufour, 2005. Monte Carlo tests with nuisance parameters: a general approach to finite-sample inference and nonstandard asymptotics in econometrics. Journal of Econometrics, forthcoming] can provide provably exact tests for such models, whether they are stationary or integrated. Applications to order selection and causality testing are considered as special cases. The technique developed is applied to a VAR model of the U.S. economy.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Econometrics - Volume 135, Issues 1â2, NovemberâDecember 2006, Pages 229-254
Journal: Journal of Econometrics - Volume 135, Issues 1â2, NovemberâDecember 2006, Pages 229-254
نویسندگان
Jean-Marie Dufour, Tarek Jouini,