کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5097535 | 1376595 | 2007 | 44 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Asymptotic distribution of the cointegrating vector estimator in error correction models with conditional heteroskedasticity
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آمار و احتمال
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper explores the asymptotic distribution of the cointegrating vector estimator in error correction models with conditionally heteroskedastic errors. Asymptotic properties of the maximum likelihood estimator (MLE) of the cointegrating vector, which estimates the cointegrating vector and the multivariate GARCH process jointly, are provided. The MLE of the cointegrating vector follows mixture normal, and its asymptotic distribution depends on the conditional heteroskedasticity and the kurtosis of standardized innovations. The reduced rank regression (RRR) estimator and the regression-based cointegrating vector estimators do not consider conditional heteroskedasticity, and thus the efficiency gain of the MLE emerges as the magnitude of conditional heteroskedasticity increases. The simulation results indicate that the relative power of the t-statistics based on the MLE improves significantly as the GARCH effect increases.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Econometrics - Volume 137, Issue 1, March 2007, Pages 68-111
Journal: Journal of Econometrics - Volume 137, Issue 1, March 2007, Pages 68-111
نویسندگان
Byeongseon Seo,