کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5098848 | 1376963 | 2012 | 20 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Learning about learning in games through experimental control of strategic interdependence
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
کنترل و بهینه سازی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We report results from an experiment in which humans repeatedly play one of two games against a computer program that follows either a reinforcement or an experience weighted attraction learning algorithm. Our experiment shows these learning algorithms detect exploitable opportunities more sensitively than humans. Also, learning algorithms respond to detected payoff-increasing opportunities systematically; however, the responses are too weak to improve the algorithms' payoffs. Human play against various decision maker types does not vary significantly. These factors lead to a strong linear relationship between the humans' and algorithms' action choice proportions that is suggestive of the algorithms' best response correspondences.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Economic Dynamics and Control - Volume 36, Issue 3, March 2012, Pages 383-402
Journal: Journal of Economic Dynamics and Control - Volume 36, Issue 3, March 2012, Pages 383-402
نویسندگان
Jason Shachat, J. Todd Swarthout,