کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5099103 | 1376986 | 2009 | 16 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Business cycle analysis and VARMA models
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
کنترل و بهینه سازی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Can long-run identified structural vector autoregressions (SVARs) discriminate between competing models in practice? Several authors have suggested SVARs fail partly because they are finite-order approximations to infinite-order processes. We estimate vector autoregressive moving average (VARMA) and state space models, which are not misspecified, using simulated data and compare true with estimated impulse responses of hours worked to a technology shock. We find few gains from using VARMA models. However, state space algorithms can outperform SVARs. In particular, the CCA subspace method consistently yields lower mean squared errors, although even these estimates remain too imprecise for reliable inference. The qualitative differences for algorithms based on different representations are small. The comparison with estimation methods without specification error suggests that the main problem is not one of working with a VAR approximation. The properties of the processes used in the literature make identification via long-run restrictions difficult for any method.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Economic Dynamics and Control - Volume 33, Issue 2, February 2009, Pages 267-282
Journal: Journal of Economic Dynamics and Control - Volume 33, Issue 2, February 2009, Pages 267-282
نویسندگان
Christian Kascha, Karel Mertens,