کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5099230 1376994 2012 21 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Learning in an estimated medium-scale DSGE model
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات کنترل و بهینه سازی
پیش نمایش صفحه اول مقاله
Learning in an estimated medium-scale DSGE model
چکیده انگلیسی
We evaluate the empirical relevance of learning by private agents in an estimated medium-scale DSGE model. We replace the standard rational expectations assumption in the Smets and Wouters (2007) model by a constant-gain learning mechanism. If agents know the correct structure of the model and only learn about the parameters, both expectation mechanisms produce very similar results, and only the transition dynamics that are generated by specific initial beliefs seem to improve the fit. If, instead, agents use only a reduced information set in forming the perceived law of motion, the implied model dynamics change and, depending on the specification of the initial beliefs, the marginal likelihood of the model can improve significantly. These best-fitting models add additional persistence to the dynamics and this reduces the gap between the IRFs of the DSGE model and the more data-driven DSGE-VAR model. However, the learning dynamics do not systematically alter the estimated structural parameters related to the nominal and real frictions in the DSGE model.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Economic Dynamics and Control - Volume 36, Issue 1, January 2012, Pages 26-46
نویسندگان
, ,