کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5102953 1480102 2017 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Modularity maximization using completely positive programming
ترجمه فارسی عنوان
حداکثر سازی ماژولار با استفاده از برنامه نویسی کاملا مثبت
کلمات کلیدی
تشخیص جامعه، حداکثر سازی مدولار، برنامه نویسی کاملا مثبت برنامه نویسی درجه یک، برنامه ریزی خطی،
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات فیزیک ریاضی
چکیده انگلیسی
Community detection is one of the most prominent problems of social network analysis. In this paper, a novel method for Modularity Maximization (MM) for community detection is presented which exploits the Alternating Direction Augmented Lagrangian (ADAL) method for maximizing a generalized form of Newman's modularity function. We first transform Newman's modularity function into a quadratic program and then use Completely Positive Programming (CPP) to map the quadratic program to a linear program, which provides the globally optimal maximum modularity partition. In order to solve the proposed CPP problem, a closed form solution using the ADAL merged with a rank minimization approach is proposed. The performance of the proposed method is evaluated on several real-world data sets used for benchmarks community detection. Simulation results shows the proposed technique provides outstanding results in terms of modularity value for crisp partitions.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physica A: Statistical Mechanics and its Applications - Volume 471, 1 April 2017, Pages 20-32
نویسندگان
, ,