کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5102967 1480102 2017 25 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Predicting links based on knowledge dissemination in complex network
ترجمه فارسی عنوان
پیش بینی پیوندهای مبتنی بر انتشار دانش در شبکه پیچیده
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات فیزیک ریاضی
چکیده انگلیسی
Link prediction is the task of mining the missing links in networks or predicting the next vertex pair to be connected by a link. A lot of link prediction methods were inspired by evolutionary processes of networks. In this paper, a new mechanism for the formation of complex networks called knowledge dissemination (KD) is proposed with the assumption of knowledge disseminating through the paths of a network. Accordingly, a new link prediction method-knowledge dissemination based link prediction (KDLP)-is proposed to test KD. KDLP characterizes vertex similarity based on knowledge quantity (KQ) which measures the importance of a vertex through H-index. Extensive numerical simulations on six real-world networks demonstrate that KDLP is a strong link prediction method which performs at a higher prediction accuracy than four well-known similarity measures including common neighbors, local path index, average commute time and matrix forest index. Furthermore, based on the common conclusion that an excellent link prediction method reveals a good evolving mechanism, the experiment results suggest that KD is a considerable network evolving mechanism for the formation of complex networks.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physica A: Statistical Mechanics and its Applications - Volume 471, 1 April 2017, Pages 561-568
نویسندگان
, ,