کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5103226 | 1480100 | 2017 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Systematic inference of the long-range dependence and heavy-tail distribution parameters of ARFIMA models
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
فیزیک ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Long-Range Dependence (LRD) and heavy-tailed distributions are ubiquitous in natural and socio-economic data. Such data can be self-similar whereby both LRD and heavy-tailed distributions contribute to the self-similarity as measured by the Hurst exponent. Some methods widely used in the physical sciences separately estimate these two parameters, which can lead to estimation bias. Those which do simultaneous estimation are based on frequentist methods such as Whittle's approximate maximum likelihood estimator. Here we present a new and systematic Bayesian framework for the simultaneous inference of the LRD and heavy-tailed distribution parameters of a parametric ARFIMA model with non-Gaussian innovations. As innovations we use the α-stable and t-distributions which have power law tails. Our algorithm also provides parameter uncertainty estimates. We test our algorithm using synthetic data, and also data from the Geostationary Operational Environmental Satellite system (GOES) solar X-ray time series. These tests show that our algorithm is able to accurately and robustly estimate the LRD and heavy-tailed distribution parameters.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physica A: Statistical Mechanics and its Applications - Volume 473, 1 May 2017, Pages 60-71
Journal: Physica A: Statistical Mechanics and its Applications - Volume 473, 1 May 2017, Pages 60-71
نویسندگان
Timothy Graves, Christian L.E. Franzke, Nicholas W. Watkins, Robert B. Gramacy, Elizabeth Tindale,