کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5103352 | 1480104 | 2017 | 21 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Do trend extraction approaches affect causality detection in climate change studies?
ترجمه فارسی عنوان
آیا روش های استخراج روند بر تشخیص علیت در مطالعات تغییر آب و هوا تاثیر می گذارد؟
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
فیزیک ریاضی
چکیده انگلیسی
Various scientific studies have investigated the causal link between solar activity (SS) and the earth's temperature (GT). Results from literature indicate that both the detected structural breaks and existing trend have significant effects on the causality detection outcomes. In this paper, we make a contribution to this literature by evaluating and comparing seven trend extraction methods covering various aspects of trend extraction studies to date. In addition, we extend previous work by using Convergent Cross Mapping (CCM) - an advanced non-parametric causality detection technique to provide evidence on the effect of existing trend in global temperature on the causality detection outcome. This paper illustrates the use of a method to find the most reliable trend extraction approach for data preprocessing, as well as provides detailed analyses of the causality detection of each component by this approach to achieve a better understanding of the causal link between SS and GT. Furthermore, the corresponding CCM results indicate increasing significance of causal effect from SS to GT since 1880 to recent years, which provide solid evidences that may contribute on explaining the escalating global tendency of warming up recent decades.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physica A: Statistical Mechanics and its Applications - Volume 469, 1 March 2017, Pages 604-624
Journal: Physica A: Statistical Mechanics and its Applications - Volume 469, 1 March 2017, Pages 604-624
نویسندگان
Xu Huang, Hossein Hassani, Mansi Ghodsi, Zinnia Mukherjee, Rangan Gupta,