کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5103534 | 1480105 | 2017 | 18 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Overlapping community detection in weighted networks via a Bayesian approach
ترجمه فارسی عنوان
تشخیص همپوشانی جامعه در شبکه های وزنی از طریق یک رویکرد بیزی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
جامعه همپوشانی، تشخیص جامعه، شبکه های وزن رویکرد بیزی،
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
فیزیک ریاضی
چکیده انگلیسی
Complex networks as a powerful way to represent complex systems have been widely studied during the past several years. One of the most important tasks of complex network analysis is to detect communities embedded in networks. In the real world, weighted networks are very common and may contain overlapping communities where a node is allowed to belong to multiple communities. In this paper, we propose a novel Bayesian approach, called the Bayesian mixture network (BMN) model, to detect overlapping communities in weighted networks. The advantages of our method are (i) providing soft-partition solutions in weighted networks; (ii) providing soft memberships, which quantify 'how strongly' a node belongs to a community. Experiments on a large number of real and synthetic networks show that our model has the ability in detecting overlapping communities in weighted networks and is competitive with other state-of-the-art models at shedding light on community partition.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physica A: Statistical Mechanics and its Applications - Volume 468, 15 February 2017, Pages 790-801
Journal: Physica A: Statistical Mechanics and its Applications - Volume 468, 15 February 2017, Pages 790-801
نویسندگان
Yi Chen, Xiaolong Wang, Xin Xiang, Buzhou Tang, Qingcai Chen, Shixi Fan, Junzhao Bu,