کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5118990 1378193 2017 24 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Multivariate bias adjusted tapered predictive process models
ترجمه فارسی عنوان
تعصب چند متغیره مدل های فرآیند پیش بینی شده مخروطی را تعدیل می کند
کلمات کلیدی
استنتاج بیزی، کوواریانس سفت کننده، مدل های پایین رتبه تمایز میان میدان متوسط، فرآیند پیش بینی، صاف بودن فضایی،
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات علوم زمین و سیاره ای (عمومی)
چکیده انگلیسی

We extend prior work on multivariate “low-rank” methods for the analysis of large multivariate spatial datasets. “Low-rank” methods usually operate on lower-dimensional subspaces and induce biases in the residual variance component as a result of over-smoothing or model mis-specification. Our current work attempts to characterize these biases, demonstrates their presence as a systemic phenomena, and explores remedial models without incurring computational costs. Our methodological contribution lies in the development of the multivariate tapered predictive process model that accounts for spatial correlations among multivariate components by the recently proposed multivariate matern correlation kernel. Both the proposed framework and the multivariate tapered predictive process model using linear model co-regionalization (LMC) (Sang et al., 2011) have been found to rectify bias in parameter estimation. We also prove novel theoretical results comparing smoothness properties of multivariate tapered predictive process models and classes of low rank models, including predictive processes. Finally, we illustrate our work using synthetic experiments as well as an application to forestry.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Spatial Statistics - Volume 21, Part A, August 2017, Pages 42-65
نویسندگان
,