کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5119001 1378193 2017 21 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Introducing bootstrap methods to investigate coefficient non-stationarity in spatial regression models
ترجمه فارسی عنوان
معرفی روش های بوت استرپ برای بررسی عدم قطعیت ضریب در مدل های رگرسیون فضایی
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات علوم زمین و سیاره ای (عمومی)
چکیده انگلیسی

In this simulation study, parametric bootstrap methods are introduced to test for spatial non-stationarity in the coefficients of regression models. Such a test can be rather simply conducted by comparing a model such as geographically weighted regression (GWR) as an alternative to a standard linear regression, the null hypothesis. In this study however, three spatially autocorrelated regressions are also used as null hypotheses: (i) a simultaneous autoregressive error model; (ii) a moving average error model; and (iii) a simultaneous autoregressive lag model. This expansion of null hypotheses, allows an investigation as to whether the spatial variation in the coefficients obtained using GWR could be attributed to some other spatial process, rather than one depicting non-stationary relationships. The new test is objectively assessed via a simulation experiment that generates data and coefficients with known multivariate spatial properties, all within the spatial setting of the oft-studied Georgia educational attainment data set. By applying the bootstrap test and associated contextual diagnostics to pre-specified, area-based, geographical processes, our study provides a valuable steer to choosing a suitable regression model for a given spatial process.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Spatial Statistics - Volume 21, Part A, August 2017, Pages 241-261
نویسندگان
, , , , ,