کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5119014 | 1485781 | 2017 | 34 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Spatio-temporal pareto modelling of heavy-tail data
ترجمه فارسی عنوان
مدل سازی پاروتو اسپورتیو-امروزی از داده های سنگین دم
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
علوم زمین و سیارات
علوم زمین و سیاره ای (عمومی)
چکیده انگلیسی
In this work we introduce a spatio-temporal process with pareto marginal distributions. Dependence in space and time is introduced through the use of latent variables in a hierarchical fashion. For some specifications the process becomes strictly stationary in space and time. We present the construction of the process and study some of its properties and dependence measures such as correlation and tail dependence. We follow a Bayesian approach to estimate model parameters and show how to obtain posterior inference via MCMC methods. The performance of the process is illustrated with a pollution dataset of monthly maxima ozone concentrations over the metropolitan area of Mexico City. Our results show that our model is in many instances, superior to a couple of alternative models based on the generalized extreme value distribution.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Spatial Statistics - Volume 20, May 2017, Pages 92-109
Journal: Spatial Statistics - Volume 20, May 2017, Pages 92-109
نویسندگان
Luis E. Nieto-Barajas, Gabriel Huerta,