کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5129073 1489607 2016 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Implementation of Conformal Cooling & Topology Optimization in 3D Printed Stainless Steel Porous Structure Injection Molds
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی صنعتی و تولید
پیش نمایش صفحه اول مقاله
Implementation of Conformal Cooling & Topology Optimization in 3D Printed Stainless Steel Porous Structure Injection Molds
چکیده انگلیسی

This work presents implementation of numerical analysis and topology optimization techniques for redesigning traditional injection molding tools. Traditional injection molding tools have straight cooling channels, drilled into a solid body of the core and cavity. The cooling time constitutes a large portion of the total production cycle that needs to be reduced as much as possible in order to bring in a significant improvement in the overall business of injection molding industry. Incorporating conformal cooling channels in the traditional dies is a highly competent solution to lower the cooling time as well as improve the plastic part quality. In this paper, the thermal and mechanical behavior of cavity and core with conformal cooling channels are analyzed to find an optimum design for molding tools. The proposed design with conformal cooling channels provides a better alternative than traditional die designs with straight channels. This design is further optimized using thermo-mechanical topology optimization based on a multiscale approach for generating sound porous structures. The implemented topology optimization results in a light-weight yet highly effective die cavity and core. The reduction in weight achieved through the design of dies with porous structures is meant to facilitate the adoption of additive manufacturing for die making by the tooling industry.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Procedia Manufacturing - Volume 5, 2016, Pages 901-915
نویسندگان
, , , , , , , , , ,