کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5129406 | 1489643 | 2017 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Joint rank and variable selection for parsimonious estimation in a high-dimensional finite mixture regression model
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز عددی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We study a dimensionality reduction technique for finite mixtures of high-dimensional multivariate response regression models. Both the dimension of the response and the number of predictors are allowed to exceed the sample size. We consider predictor selection and rank reduction to obtain lower-dimensional approximations. A class of estimators with a fast rate of convergence is introduced. We apply this result to a specific procedure, introduced in Devijver (in press), where the relevant predictors are selected by the Group-Lasso.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Multivariate Analysis - Volume 157, May 2017, Pages 1-13
Journal: Journal of Multivariate Analysis - Volume 157, May 2017, Pages 1-13
نویسندگان
Emilie Devijver,