کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5129450 | 1489647 | 2017 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Data-driven kNN estimation in nonparametric functional data analysis
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز عددی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Kernel nearest-neighbor (kNN) estimators are introduced for the nonparametric analysis of statistical samples involving functional data. Asymptotic theory is provided for several different target operators including regression, conditional density, conditional distribution and hazard operators. The main point of the paper is to consider data-driven methods of selecting the number of neighbors in order to make the proposed methods fully automatic. As a by-product of our proofs we state consistency results for kNN functional estimators which are uniform in the number of neighbors (UINN). Some simulated experiences illustrate the feasibility and the finite-sample behavior of the method.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Multivariate Analysis - Volume 153, January 2017, Pages 176-188
Journal: Journal of Multivariate Analysis - Volume 153, January 2017, Pages 176-188
نویسندگان
Lydia-Zaitri Kara, Ali Laksaci, Mustapha Rachdi, Philippe Vieu,