کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5129487 1489732 2017 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Support vector machine and its bias correction in high-dimension, low-sample-size settings
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Support vector machine and its bias correction in high-dimension, low-sample-size settings
چکیده انگلیسی


- We give asymptotic properties of the SVM in the HDLSS context.
- We derive the bias term in the SVM and show that the performance of the SVM is affected by the bias directly.
- We propose a bias-corrected SVM (BC-SVM) and show that the BC-SVM improves the performance of the SVM successfully in the HDLSS context.

In this paper, we consider asymptotic properties of the support vector machine (SVM) in high-dimension, low-sample-size (HDLSS) settings. We show that the hard-margin linear SVM holds a consistency property in which misclassification rates tend to zero as the dimension goes to infinity under certain severe conditions. We show that the SVM is very biased in HDLSS settings and its performance is affected by the bias directly. In order to overcome such difficulties, we propose a bias-corrected SVM (BC-SVM). We show that the BC-SVM gives preferable performances in HDLSS settings. We also discuss the SVMs in multiclass HDLSS settings. Finally, we check the performance of the classifiers in actual data analyses.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Statistical Planning and Inference - Volume 191, December 2017, Pages 88-100
نویسندگان
, , ,