کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
518071 867554 2015 19 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Preventing numerical oscillations in the flux-split based finite difference method for compressible flows with discontinuities
ترجمه فارسی عنوان
جلوگیری از نوسانات عددی در روش اختلاف محدود بر اساس شار اسپلیت برای جریان های فشرده با اختلالات
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
چکیده انگلیسی

In simulating compressible flows with contact discontinuities or material interfaces, numerical pressure and velocity oscillations can be induced by point-wise flux vector splitting (FVS) or component-wise nonlinear difference discretization of convection terms. The current analysis showed that the oscillations are due to the incompatibility of the point-wise splitting of eigenvalues in FVS and the inconsistency of component-wise nonlinear difference discretization among equations of mass, momentum, energy, and even fluid composition for multi-material flows. Two practical principles are proposed to prevent these oscillations: (i) convective fluxes must be split by a global FVS, such as the global Lax–Friedrichs FVS, and (ii) consistent discretization between different equations must be guaranteed. The latter, however, is not compatible with component-wise nonlinear difference discretization. Therefore, a consistent discretization method that uses only one set of common weights is proposed for nonlinear weighted essentially non-oscillatory (WENO) schemes. One possible procedure to determine the common weights is presented that provided good results. The analysis and methods stated above are appropriate for both single- (e.g., contact discontinuity) and multi-material (e.g., material interface) discontinuities. For the latter, however, the additional fluid composition equation should be split and discretized consistently for compatibility with the other equations. Numerical tests including several contact discontinuities and multi-material flows confirmed the effectiveness, robustness, and low computation cost of the proposed method.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 300, 1 November 2015, Pages 269–287
نویسندگان
, , , , ,