کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
518256 | 867571 | 2011 | 15 صفحه PDF | دانلود رایگان |

Data mining allow users to discover novelty in huge amounts of data. Frequent pattern methods have proved to be efficient, but the extracted patterns are often too numerous and thus difficult to analyze by end users. In this paper, we focus on sequential pattern mining and propose a new visualization system to help end users analyze the extracted knowledge and to highlight novelty according to databases of referenced biological documents. Our system is based on three visualization techniques: clouds, solar systems, and treemaps. We show that these techniques are very helpful for identifying associations and hierarchical relationships between patterns among related documents. Sequential patterns extracted from gene data using our system were successfully evaluated by two biology laboratories working on Alzheimer’s disease and cancer.
Journal: Journal of Biomedical Informatics - Volume 44, Issue 5, October 2011, Pages 760–774