کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
525104 868887 2014 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Short-term traffic volume forecasting: A k-nearest neighbor approach enhanced by constrained linearly sewing principle component algorithm
ترجمه فارسی عنوان
پیش بینی میزان ترافیک کوتاه مدت: الگوریتم مؤلفه اصل خطی دوختی با محدودیت نزدیک به همسایگی به دست آمده است
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
چکیده انگلیسی


• A novel algorithm is proposed to forecast short-term traffic volume.
• Overlapping is avoided in selecting k-nearest neighbors.
• A linearly sewing principle component algorithm is developed.
• The new algorithm outperformed the competing algorithms in most cases.

To enhance the performance of the k-nearest neighbors approach in forecasting short-term traffic volume, this paper proposed and tested a two-step approach with the ability of forecasting multiple steps. In selecting k-nearest neighbors, a time constraint window is introduced, and then local minima of the distances between the state vectors are ranked to avoid overlappings among candidates. Moreover, to control extreme values’ undesirable impact, a novel algorithm with attractive analytical features is developed based on the principle component. The enhanced KNN method has been evaluated using the field data, and our comparison analysis shows that it outperformed the competing algorithms in most cases.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Transportation Research Part C: Emerging Technologies - Volume 43, Part 1, June 2014, Pages 143–157
نویسندگان
, ,