کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
525255 868902 2011 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A genetic algorithm-based method for improving quality of travel time prediction intervals
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
A genetic algorithm-based method for improving quality of travel time prediction intervals
چکیده انگلیسی

The transportation literature is rich in the application of neural networks for travel time prediction. The uncertainty prevailing in operation of transportation systems, however, highly degrades prediction performance of neural networks. Prediction intervals for neural network outcomes can properly represent the uncertainty associated with the predictions. This paper studies an application of the delta technique for the construction of prediction intervals for bus and freeway travel times. The quality of these intervals strongly depends on the neural network structure and a training hyperparameter. A genetic algorithm–based method is developed that automates the neural network model selection and adjustment of the hyperparameter. Model selection and parameter adjustment is carried out through minimization of a prediction interval-based cost function, which depends on the width and coverage probability of constructed prediction intervals. Experiments conducted using the bus and freeway travel time datasets demonstrate the suitability of the proposed method for improving the quality of constructed prediction intervals in terms of their length and coverage probability.


► Uncertainty quantification in transportation systems.
► Constructing prediction intervals for bus and freeway travel time prediction.
► Optimizing the quality of prediction intervals using a genetic algorithm-based method.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Transportation Research Part C: Emerging Technologies - Volume 19, Issue 6, December 2011, Pages 1364–1376
نویسندگان
, , , , ,