کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
525749 869021 2013 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An optimisation approach to the recovery of reflection parameters from a single hyperspectral image
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
An optimisation approach to the recovery of reflection parameters from a single hyperspectral image
چکیده انگلیسی


• We recover photometric parameters and shape from a single hyperspectral image.
• We view image radiance as a combination of specular and diffuse reflection component.
• We cast the recovery of the reflection parameters in an optimisation setting.
• The approach is quite general and can be applied to a number of reflectance models.

In this paper, we present a method to recover the parameters governing the reflection of light from a surface making use of a single hyperspectral image. To do this, we view the image radiance as a combination of specular and diffuse reflection components and present a cost functional which can be used for purposes of iterative least squares optimisation. This optimisation process is quite general in nature and can be applied to a number of reflectance models widely used in the computer vision and graphics communities. We elaborate on the use of these models in our optimisation process and provide a variant of the Beckmann–Kirchhoff model which incorporates the Fresnel reflection term. We show results on synthetic images and illustrate how the recovered photometric parameters can be employed for skin recognition in real world imagery, where our estimated albedo yields a classification rate of 95.09 ± 4.26% as compared to an alternative, whose classification rate is of 90.94 ± 6.12%. We also show quantitative results on the estimation of the index of refraction, where our method delivers an average per-pixel angular error of 0.15°. This is a considerable improvement with respect to an alternative, which yields an error of 9.9°.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Vision and Image Understanding - Volume 117, Issue 12, December 2013, Pages 1672–1688
نویسندگان
, ,