کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
525820 869029 2014 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Fully automatic segmentation of AP pelvis X-rays via random forest regression with efficient feature selection and hierarchical sparse shape composition
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
Fully automatic segmentation of AP pelvis X-rays via random forest regression with efficient feature selection and hierarchical sparse shape composition
چکیده انگلیسی


• A fully automatic approach for landmark detection and shape segmentation.
• The random forest regression framework with the sparse shape composition model.
• Effective feature selection that reduces dimension without sacrificing the accuracy.

In clinical practice, traditional X-ray radiography is widely used, and knowledge of landmarks and contours in anteroposterior (AP) pelvis X-rays is invaluable for computer aided diagnosis, hip surgery planning and image-guided interventions. This paper presents a fully automatic approach for landmark detection and shape segmentation of both pelvis and femur in conventional AP X-ray images. Our approach is based on the framework of landmark detection via Random Forest (RF) regression and shape regularization via hierarchical sparse shape composition. We propose a visual feature FL-HoG (Flexible-Level Histogram of Oriented Gradients) and a feature selection algorithm based on trace radio optimization to improve the robustness and the efficacy of RF-based landmark detection. The landmark detection result is then used in a hierarchical sparse shape composition framework for shape regularization. Finally, the extracted shape contour is fine-tuned by a post-processing step based on low level image features. The experimental results demonstrate that our feature selection algorithm reduces the feature dimension in a factor of 40 and improves both training and test efficiency. Further experiments conducted on 436 clinical AP pelvis X-rays show that our approach achieves an average point-to-curve error around 1.2 mm for femur and 1.9 mm for pelvis.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Vision and Image Understanding - Volume 126, September 2014, Pages 1–10
نویسندگان
, ,