کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
525906 869039 2014 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Co-trained generative and discriminative trackers with cascade particle filter
ترجمه فارسی عنوان
ردیاب های مولد و تبعیض آمیز تحت آموزش با فیلتر ذرات آبشار
کلمات کلیدی
ردیابی ویژوال فیلتر ذرات آبشار، همکاری آموزشی، ردیاب تبعیض آمیز، ردیاب تولیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی


• We formulate our visual tracker in a co-training framework to label incoming data continuously.
• We employ the cascade particle filter framework to improve the speed of our tracker significantly.
• Our tracker adaptively learns the appearance of the object; thus, it allows reacquiring an object after total occlusion.
• We carefully tested the components of our tracker and compare with many recent state-of-the-arts

Visual tracking is a challenging problem, as the appearance of an object may change due to viewpoint variations, illumination changes, and occlusion. It may also leave the field of view (FOV), then reappears. In order to track and reacquire an unknown object with limited labeling data, we propose to learn these changes online and incrementally build a model that encodes all appearance variations while tracking. To address this semi-supervised learning problem, we propose a co-training framework with cascade particle filter to label incoming data continuously and online update hybrid generative and discriminative models. Each of the layers in the cascade contains one or more either generative or discriminative appearance models. The cascade manner of organizing the particle filter enables the efficient evaluation of multiple appearance models with different computational costs; thus improves the speed of the tracker. The proposed online framework provides temporally local tracking that adapts to appearance changes. Moreover, it provides an object-specific detection ability that allows to reacquire an object after total occlusion. Extensive experiments demonstrate that under challenging situations, our method has strong reacquisition ability and robustness to distracters in clutter background. We also provide quantitative comparisons to other state of the art trackers.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Vision and Image Understanding - Volume 119, February 2014, Pages 41–56
نویسندگان
, , ,