کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
525951 869045 2009 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Search strategies for shape regularized active contour
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
Search strategies for shape regularized active contour
چکیده انگلیسی

Nonlinear shape models have been shown to improve the robustness and flexibility of contour-based object segmentation when there are appearance ambiguities between the object and the background. In this paper, we focus on a new search strategy for the shape regularized active contour (ShRAC) model, which adopts existing nonlinear shape models to segment objects that are similar to a set of training shapes. The search for optimal contour is performed by a coarse-to-fine algorithm that iterates between combinatorial search and gradient-based local optimization. First, multi-solution dynamic programming (MSDP) is used to generate initial candidates by minimizing only the image energy. In the second step, a combination of image energy and shape energy is minimized starting from these initial candidates using a local optimization method and the best one is selected. To generate diverse initial candidates while reducing invalid shapes, we apply two pruning methods to the search space of MSDP. Our search strategy combines the advantages of global combinatorial search and local optimization, and has shown excellent robustness to local minima caused by distracting suboptimal solutions. Experimental results on segmentation of different anatomical structures using ShRAC, as well as preliminary results on human silhouette segmentation are provided.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Vision and Image Understanding - Volume 113, Issue 10, October 2009, Pages 1053–1063
نویسندگان
, , ,