کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
526103 869062 2006 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Combining self-organizing neural nets with multivariate statistics for efficient color image retrieval
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
Combining self-organizing neural nets with multivariate statistics for efficient color image retrieval
چکیده انگلیسی

An efficient novel strategy for color-based image retrieval is introduced. It is a hybrid approach combining a data compression scheme based on self-organizing neural networks with a nonparametric statistical test for comparing vectorial distributions. First, the color content in each image is summarized by representative RGB-vectors extracted using the Neural-Gas network. The similarity between two images is then assessed as commonality between the corresponding representative color distributions and quantified using the multivariate Wald–Wolfowitz test. Experimental results drawn from the application to a diverse collection of color images show a significantly improved performance (approximately 10–15% higher) relative to both the popular, simplistic approach of color histogram and the sophisticated, computationally demanding technique of Earth Mover’s Distance.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Vision and Image Understanding - Volume 102, Issue 3, June 2006, Pages 250–258
نویسندگان
, , , ,