کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
527295 869310 2016 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Primary object discovery and segmentation in videos via graph-based transductive inference
ترجمه فارسی عنوان
کشف اولیه و تقسیم بندی در فیلم ها از طریق استنتاج مولکولی مبتنی بر گراف
کلمات کلیدی
استنتاج مولکولی مبتنی بر گراف، تجزیه و تحلیل شیء ویدئو، پیشنهاد شی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی


• We propose an efficient graph transduction process that detects recurring primary objects and learns cohort object proposals over space-time in video, by exploiting both appearance cues learned from rudimentary detections of object-like regions, and the intrinsic structures within video data.
• We develop a robust object segmentation method against the changes in appearance, shape and occlusion in challenging videos which is underpinned by this set of rich descriptions from graph transductive inference.
• We present extensive experiments on challenging datasets that demonstrate the superior performance of our approach compared with the state-of-the-art methods.

The proliferation of video data makes it imperative to develop automatic approaches that semantically analyze and summarize the ever-growing massive visual data. As opposed to existing approaches built on still images, we propose an algorithm that detects recurring primary object and learns cohort object proposals over space-time in video. Our core contribution is a graph transduction process that exploits both appearance cues learned from rudimentary detections of object-like regions, and the intrinsic structures within video data. By exploiting the fact that rudimentary detections of recurring objects in video, despite appearance variation and sporadity of detection, collectively describe the primary object, we are able to learn a holistic model given a small set of object-like regions. This prior knowledge of the recurring primary object can be propagated to the rest of the video to generate a diverse set of object proposals in all frames, incorporating both spatial and temporal cues. This set of rich descriptions underpins a robust object segmentation method against the changes in appearance, shape and occlusion in natural videos. We present extensive experiments on challenging datasets that demonstrate the superior performance of our approach compared with the state-of-the-art methods.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Vision and Image Understanding - Volume 143, February 2016, Pages 159–172
نویسندگان
, ,