کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
527312 869313 2010 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Distinguishing variance embedding
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
Distinguishing variance embedding
چکیده انگلیسی

Nonlinear dimensionality reduction is a challenging problem encountered in a variety of high dimensional data analysis. Based on the different geometric intuitions of manifolds, maximum variance unfolding (MVU) and Laplacian eigenmaps are designed for detecting the different aspects of data set. In this paper, combining the ideas of MVU and Laplacian eigenmaps, we propose a new nonlinear dimensionality reduction method called distinguishing variance embedding (DVE), which unfolds the data manifold by maximizing the global variance subject to the proximity relation preservation constraint originated in Laplacian eigenmaps. We illustrate the algorithm on easily visualized examples of curves and surfaces, as well as on actual images of faces, handwritten digits, and rotating objects.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Image and Vision Computing - Volume 28, Issue 6, June 2010, Pages 872–880
نویسندگان
, , ,