کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
527594 869336 2014 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Stereo reconstruction using high-order likelihoods
ترجمه فارسی عنوان
بازسازی استریو با استفاده از گزینه های بالا
کلمات کلیدی
احتمال احتمال بالا، میدان تصادفی مارکوف، بینایی استریو، چارچوب تطبیق جهانی کاهش نمودار، کلک های بالا دستکاری مشکوک
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی


• Novel high-order likelihood model for window-based stereo matching problem.
• Efficient optimization using pairwise clique reduction technique.
• Efficient parallelization and implementation on GPU (graphics processing unit).

Under the popular Markov random field (MRF) model, low-level vision problems are usually formulated by prior and likelihood models. In recent years, the priors have been formulated from high-order cliques and have demonstrated their robustness in many problems. However, the likelihoods have remained zeroth-order clique potentials. This zeroth-order clique assumption causes inaccurate solution and gives rise to undesirable fattening effect especially when window-based matching costs are employed. In this paper, we investigate high-order likelihood modeling for the stereo matching problem which advocates the dissimilarity measure between the whole reference image and the warped non-reference image. If the dissimilarity measure is evaluated between filtered stereo images, the matching cost can be modeled as high-order clique potentials. When linear filters and nonparametric census filter are used, it is shown that the high-order clique potentials can be reduced to pairwise energy functions. Consequently, a global optimization is possible by employing efficient graph cuts algorithm. Experimental results show that the proposed high-order likelihood models produce significantly better results than the conventional zeroth-order models qualitatively as well as quantitatively.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Vision and Image Understanding - Volume 125, August 2014, Pages 223–236
نویسندگان
, , , , ,