کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
527694 869346 2014 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Face recognition for web-scale datasets
ترجمه فارسی عنوان
تشخیص چهره برای مجموعه داده های وب
کلمات کلیدی
شناسایی چهره باز طبقه بندی در مقیاس بزرگ، مجموعه داده های کنترل نشده، نمایندگی های انعطاف پذیر
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی


• Explore large-scale face identification, focusing on realistic open-universe scenarios.
• Release feature descriptors for a new Facebook dataset and a Facebook downloader tool.
• Develop an algorithm, LASRC, for realtime, accurate, and web-scale face identification.
• Evaluate local features, sparsity, and locality with large-scale datasets.
• Compare LASRC to many state-of-the-art algorithms with real-world datasets.
• Compare LASRC to many state-of-the-art algorithms with real-world datasets.

With millions of users and billions of photos, web-scale face recognition is a challenging task that demands speed, accuracy, and scalability. Most current approaches do not address and do not scale well to Internet-sized scenarios such as tagging friends or finding celebrities. Focusing on web-scale face identification, we gather an 800,000 face dataset from the Facebook social network that models real-world situations where specific faces must be recognized and unknown identities rejected. We propose a novel Linearly Approximated Sparse Representation-based Classification (LASRC) algorithm that uses linear regression to perform sample selection for ℓ1-minimization, thus harnessing the speed of least-squares and the robustness of sparse solutions such as SRC. Our efficient LASRC algorithm achieves comparable performance to SRC with a 100–250 times speedup and exhibits similar recall to SVMs with much faster training. Extensive tests demonstrate our proposed approach is competitive on pair-matching verification tasks and outperforms current state-of-the-art algorithms on open-universe identification in uncontrolled, web-scale scenarios.

Figure optionsDownload high-quality image (126 K)Download as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Vision and Image Understanding - Volume 118, January 2014, Pages 153–170
نویسندگان
, ,