کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
528130 869519 2014 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Composite distance based approach to von Mises mixture reduction
ترجمه فارسی عنوان
رویکرد فاصله کامپوزیت به کاهش مخلوط فون مایز
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی

This paper presents a systematic approach for component number reduction in mixtures of exponential families, putting a special emphasis on the von Mises mixtures. We propose to formulate the problem as an optimization problem utilizing a new class of computationally tractable composite distance measures as cost functions, namely the composite Rényi αα-divergences, which include the composite Kullback–Leibler distance as a special case. Furthermore, we prove that the composite divergence bounds from above the corresponding intractable Rényi αα-divergence between a pair of mixtures. As a solution to the optimization problem we synthesize that two existing suboptimal solution strategies, the generalized k-means and a pairwise merging approach, are actually minimization methods for the composite distance measures. Moreover, in the present paper the existing joining algorithm is also extended for comparison purposes. The algorithms are implemented and their reduction results are compared and discussed on two examples of von Mises mixtures: a synthetic mixture and a real-world mixture used in people trajectory shape analysis.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Fusion - Volume 20, November 2014, Pages 136–145
نویسندگان
, , ,