کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
528189 | 869534 | 2014 | 8 صفحه PDF | دانلود رایگان |
Collecting sensory data using a mobile data sink has been shown to drastically reduce energy consumption at the cost of increasing delivery delay. Towards improved energy-latency trade-offs, we propose a biased, adaptive sink mobility scheme, that adjusts to local network conditions, such as the surrounding density, remaining energy and the number of past visits in each network region. The sink moves probabilistically, favoring less visited areas in order to cover the network area faster, while adaptively stopping more time in network regions that tend to produce more data. We implement and evaluate our mobility scheme via simulation in diverse network settings. Compared to known blind random, non-adaptive schemes, our method achieves significantly reduced latency, especially in networks with non-uniform sensor distribution, without compromising the energy efficiency and delivery success.
Journal: Information Fusion - Volume 15, January 2014, Pages 56–63