کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
531766 869875 2007 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Image covariance-based subspace method for face recognition
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
Image covariance-based subspace method for face recognition
چکیده انگلیسی

This paper proposes a new subspace method that is based on image covariance obtained from windowed features of images. A windowed input feature consists of a number of pixels, and the dimension of input space is determined by the number of windowed features. Each element of an image covariance matrix can be obtained from the inner product of two windowed features. The 2D-PCA and 2D-LDA methods are then obtained from principal component analysis and linear discriminant analysis, respectively, using the image covariance matrix. In the case of 2D-LDA, there is no need for PCA preprocessing and the dimension of subspace can be greater than the number of classes because the within-class and between-class image covariance matrices have full ranks. Comparative experiments are performed using the FERET, CMU, and ORL databases of facial images. The experimental results show that the proposed 2D-LDA provides the best recognition rate among several subspace methods in all of the tests.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 40, Issue 5, May 2007, Pages 1592–1604
نویسندگان
, ,