کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
532136 869910 2014 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Inductive manifold learning using structured support vector machine
ترجمه فارسی عنوان
یادگیری منیفولد انفجاری با استفاده از ماشین بردار پشتیبانی شده با ساختار
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی


• We propose a general framework for out-of-sample extensions for any manifold learning methods.
• We learn a mapping from original space to its manifolds by using structured SVM.
• Experiments on several datasets show that the proposed method outperforms the existing ones.

Most manifold learning techniques are used to transform high-dimensional data sets into low-dimensional space. In the use of such techniques, after unseen data samples are added to the data set, retraining is usually necessary. However, retraining is a time-consuming process and no guarantee of the transformation into the exactly same coordinates, thus presenting a barrier to the application of manifold learning as a preprocessing step in predictive modeling. To solve this problem, learning a mapping from high-dimensional representations to low-dimensional coordinates is proposed via structured support vector machine. After training a mapping, low-dimensional representations of unobserved data samples can be easily predicted. Experiments on several datasets show that the proposed method outperforms the existing out-of-sample extension methods.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 47, Issue 1, January 2014, Pages 470–479
نویسندگان
, ,