کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
532620 869974 2009 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Multi-output regression on the output manifold
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
Multi-output regression on the output manifold
چکیده انگلیسی

Multi-output regression aims at learning a mapping from an input feature space to a multivariate output space. Previous algorithms define the loss functions using a fixed global coordinate of the output space, which is equivalent to assuming that the output space is a whole Euclidean space with a dimension equal to the number of the outputs. So the underlying structure of the output space is completely ignored. In this paper, we consider the output space as a Riemannian submanifold to incorporate its geometric structure into the regression process. To this end, we propose a novel mechanism, called locally linear transformation (LLT), to define the loss functions on the output manifold. In this way, currently existing regression algorithms can be improved. In particular, we propose an algorithm under the support vector regression framework. Our experimental results on synthetic and real-life data are satisfactory.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 42, Issue 11, November 2009, Pages 2737–2743
نویسندگان
, , ,